REMOVABLE AND NONREMOVABLE DISCONTINUITY

                                                                                    

CONTINUITY

IF Lim f(x)= Lim  f(x) =  f(a)
    x->a-         x->a+
THEN
  
FUNCTION IS CONTINUOUS AT 'a'


WHERE  ,    Lim  f(x) is a left hand limit
                      x->a-
                      Lim f(x) is a right hand limit
                      x->a+


                          REMOVABLE DISCONTINUITY

IF Left hand limit = Right hand limit
But   f(a) is different; then it is called as Removable Discontinuity


So;       Lim f(x)= Lim f(x) but not equal to f(a)
            x->a -       x->a+
Then f(x) has removable discontinuity

WE CAN REMOVE  THIS DISCONTINUITY BY DEFINING 
VALUE OF F(a)



EX:

                                           
1.    Let   f(x)= 2x.x      ,   for  1≤ x<3
                     =  20       ,   for x=3
                     =6x         ,   for 3<x≤5

This is example of removable discontinuity
because;                         
                 Lim f(x)=2x.x=2.3.3=18
                 x->3-
                 Lim f(x)=6x=6.3=18
                 x->3+
 But                f(3)=20
                  so;   left hand limit and right hand limits are same(18)
                          but f(3) is different (20).
                  Hence function is not continuous at 3.


 IF WE DEFINE F(3)=18; LEFT HAND LIMIT , RIGHT HAND
LIMIT AND F(3) ARE SAME.AND FUNCTION BECOMES 
CONTINUOUS AT 3.SO THIS IS CALLED REMOVABLE DIS-
CONTINUITY.


                     NON-REMOVABLE DISCONTINUITY

If left hand limit , right hand limit at point say, 'a' and f(a)
are different; then this is non- removable discontinuity.
we cannot make this function continuous by redefining f(a)




EX:

F(X)=2   , X<10
        =3   , X=10
        =5   , X>10
 IN THIS EXAMPLE;
Lim F(x)=2
x->10-

Lim F(x)=5
x->10+

and F(10)=3.

 
as          2≠3≠5
then  function is not continuous
this is called as non removable discontinuity.
we cannot fix a single value of F(10) as there are different values of
left hand limit and right hand limit.(2 and 5).

                  




Comments