REMOVABLE AND NONREMOVABLE DISCONTINUITY

                                                                                    

CONTINUITY

IF Lim f(x)= Lim  f(x) =  f(a)
    x->a-         x->a+
THEN
  
FUNCTION IS CONTINUOUS AT 'a'


WHERE  ,    Lim  f(x) is a left hand limit
                      x->a-
                      Lim f(x) is a right hand limit
                      x->a+


                          REMOVABLE DISCONTINUITY

IF Left hand limit = Right hand limit
But   f(a) is different; then it is called as Removable Discontinuity


So;       Lim f(x)= Lim f(x) but not equal to f(a)
            x->a -       x->a+
Then f(x) has removable discontinuity

WE CAN REMOVE  THIS DISCONTINUITY BY DEFINING 
VALUE OF F(a)



EX:

                                           
1.    Let   f(x)= 2x.x      ,   for  1≤ x<3
                     =  20       ,   for x=3
                     =6x         ,   for 3<x≤5

This is example of removable discontinuity
because;                         
                 Lim f(x)=2x.x=2.3.3=18
                 x->3-
                 Lim f(x)=6x=6.3=18
                 x->3+
 But                f(3)=20
                  so;   left hand limit and right hand limits are same(18)
                          but f(3) is different (20).
                  Hence function is not continuous at 3.


 IF WE DEFINE F(3)=18; LEFT HAND LIMIT , RIGHT HAND
LIMIT AND F(3) ARE SAME.AND FUNCTION BECOMES 
CONTINUOUS AT 3.SO THIS IS CALLED REMOVABLE DIS-
CONTINUITY.


                     NON-REMOVABLE DISCONTINUITY

If left hand limit , right hand limit at point say, 'a' and f(a)
are different; then this is non- removable discontinuity.
we cannot make this function continuous by redefining f(a)




EX:

F(X)=2   , X<10
        =3   , X=10
        =5   , X>10
 IN THIS EXAMPLE;
Lim F(x)=2
x->10-

Lim F(x)=5
x->10+

and F(10)=3.

 
as          2≠3≠5
then  function is not continuous
this is called as non removable discontinuity.
we cannot fix a single value of F(10) as there are different values of
left hand limit and right hand limit.(2 and 5).

                  




Comments

Popular posts from this blog

DERIVATION OF AREA AND CIRCUMFERENCE OF CIRCLE USING CALCULUS