Posts

Showing posts from April, 2024

CONVERGENCE OF SEQUENCES IN METRIC SPACE

                                                        CONVERGENCE  

REMOVABLE AND NONREMOVABLE DISCONTINUITY

                                                                                      CONTINUITY IF Lim f(x)= Lim  f(x) =  f(a)     x->a-         x->a+ THEN    FUNCTION IS CONTINUOUS AT 'a' WHERE  ,    Lim  f(x) is a left hand limit                       x->a-                       Lim f(x) is a right hand limit                       x->a+                           REMOVABLE DISCONTINUITY IF Left hand limit = Right hand limit But   f(a) is different; then it is called as Removable Discontinuity So;       Lim f(x)= Lim f(x) but not equal to f(a)             x->a -       x->a+ Then f(x) has removable discontinuity WE CAN REMOVE  THIS DISCONTINUITY BY DEFINING  VALUE OF F(a) EX:                                             1.    Let   f(x)= 2x.x      ,   for  1≤ x<3                      =  20       ,   for x=3                      =6x         ,   for 3<x ≤5 This is example of removable discontinuity because;                                           Lim f(x)

L'HOSPITAL'S RULE (WITH EXAMPLES)

                               L'HOSPITAL'S                                                                 RULE IF  Lim  F(X)/G(X) = 0/0 ;       X->a THEN   Lim F(X)/G(X)  =  Lim F'(X)/G'(X)                X->a                         X->a PROBLEMS BASED ON ABOVE RULE:                                   _ 1. Lim   sin(1-x)/√x - 1 = ?    x->1 ANSWER: IF WE PUT x=1; WE GET  ...........  sin(1-x)                                                                = sin(1-1)                                                                 =sin(0)                                                 _              =0                AND .................. √x - 1                                              =1-1                                               =0 SO,                        _           sin(1-x)/√x - 1 = 0/o SO APPLY L'HOSPITAL'S RULE;                               _                                                                  _  Lim   sin(1-x)/√x - 1

DERIVATION OF DIFFERENTIATION(WITH EXAMPLES)

Image
                                                                 DIFFERENTIATION  THE TRIANGLE FORMED ON TOP IS               tanθ= dy/dx..............from above figure              as slope is tanθ is slope(say m);              so  m= dy/dx.              as dy = F(X+dx) - F(X);      FROM FIRST FIGURE.              SO     m= F(X+dx)-F(X)/dx               now, dx is very small;               let dx=h;             dy/dx=   lim   F(X+h)-F(X)   /   h  ....................1.                          h->0                                                           SOME EXAMPLES  1. F(X)=Y=SINX.     FIND dy/dx? ANS.     F(X)= SINX  =>  F(X+h) = SIN(X+h)    AS   dy/dx =  lim F(X+h)-F(X)  /  h  ....................from 1.                         h->0      dy/dx  = lim  SIN(X+h)- SIN(X)  / h                     h->0       dy/dx =lim  (SINX COSh + COSX SINh) - SINX     /     h                    h->0       dy/dx = lim     (SINX COSh + COSX SINh - SINX)  / h                    h->

DERIVATION OF AREA AND CIRCUMFERENCE OF CIRCLE USING CALCULUS

Image
CIRCLE DERIVATION OF AREA OF CIRCLE LETS TAKE d𝞡 , A  VERY SMALL ANGLE IN ABOVE FIGURE SO; THE SMALL PART OF CIRCLE IN DIAGRAM  CAN BE CONSIDERED AS RIGHT ANGLED TRIANGLE FROM ABOVE FIGURE, tan d𝞡= opposite side/ adjacent side                                                     tan d𝞡   = ds/r AS ANGLE IS VERY SMALL, tan d𝞡 = d𝞡  SO,                                               d𝞡 =ds/r SO,                                                ds=r d𝞡 ..................(1)                                                      AREA OF TRIANGLE= 1/2 * BASE *HEIGHT                                       = 1/2 * r * ds                                    D(A)   = 1/2 * r *r d𝞡.............      FROM   (1) IF WE INTEGRATE THESE SMALL TRIANGLES HAVING THIS AREA, WE WILL GET AREA OF CIRCLE                                                SO     AREA OF CIRCLE= ∫D(A)                                                            2𝜋                                                       =  ∫    1/2* r