CONVERGENCE OF SEQUENCES IN METRIC SPACE

                                                      CONVERGENCE 


  DEFINITION 

 WE SAY THAT SEQUENCE (Xn) CONVERGES TO x𝟄 X IF  GIVEN  𝜀 > 0,

THERE EXISTS N  𝟄   NATURAL NUMBER SUCH THAT FOR ALL n >= N , WE HAVE

Xn 𝝐   B(x,𝛆).OR d(Xn ,x)<𝛆.



QUESTIONS


1. IF Xn converges to x
prove that subsequence of Xn also converges to x


proof:   IF Xn converges to x , then from above definition;
there exists 𝛆  >0 such that d(Xn,x)< 𝛆 

let subsequence of Xn be Xnk . (here k is ≥ 1)
so we have to prove that Xnk converges to x


we have  d(Xn,x)< 𝛆  
now, from triangle inequality ,  d(Xn,x)<d(Xn,Xnk)+d(Xnk,x)   and  d(Xn,x)< 𝛆 
as 𝛆  >0 ,  we have d(Xn,Xnk)+d(Xnk,x) < 𝛆 
                  hence,  d(Xnk,x) < 𝛆 
from definition of convergence, Xnk converges to x
As Xnk is subsequence of X , 
ANY SUBSEQUENCE OF CONVERGENT SEQUENCE IS CONVERGENT TO LIMIT 
OF GIVEN SEQUENCE.




2. The limit of sequence in metric space is unique.

proof:   

let Xn converges to x
and Xn converges to y
then if x=y , above theorem is proved.


let us assume that x≠ y........................1.
so                          d(x, y ) >0


As Xn converges to x.............   d(Xn , x)< 𝛆1
also   Xn converges to y ..........d(Xn , y)𝛆 2

IF     𝛆  = max{  𝛆1   ,    𝛆 2    }

So        d(Xn , x) < 𝛆
            d(Xn , y)  < 𝛆

By triangle inequality
          d(x,y)< d(x,Xn) + d(Xn,y) <   𝛆  +   𝛆 
d(x,y)<d(x,Xn) + d(Xn,y) < 2𝛆
d(x,y)<d(x,Xn) + d(Xn,y) < 𝛆1...........other constant
so,      d(x,y)< 𝛆1
as    𝛆1 is any positive number,
we can take  d(x,y)=0
so x=y   ..................................CONTRADICTION TO 1.

SO, OUR ASSUMSION , X≠ Y IS WRONG 
SO, X=Y
MEANS LIMIT OF SEQUENCE IN METRIC SPACE IS UNIQUE.
 



 3.  Let    Xk 𝟄  Rn  converges to x 𝟄  Rn.
Show that ‖  Xk ‖ converges to  ‖  X ‖.



proof:
  

As  Xk converges to x
      d(Xk , x)<ε
BUT  AS Xk and x are vectors, we write;
        ‖  Xk - x ‖ <  ε


FROM FORMULA,  |   ‖  X ‖  -     ‖  Y ‖    |   ≤    ‖  X -Y   ‖
  WE GET                ,   |   ‖  Xk ‖  -     ‖  X ‖    |   ≤    ‖  Xk -X   ‖  <   ε
                                       |   ‖  Xk ‖  -     ‖  X ‖    |   <      ε
                                        HENCE
                                             ‖  Xk ‖  converges to    ‖  X ‖ 
                                         

.                                            

     




                                                                                      


Comments

Popular posts from this blog

REMOVABLE AND NONREMOVABLE DISCONTINUITY

DERIVATION OF AREA AND CIRCUMFERENCE OF CIRCLE USING CALCULUS